Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere
نویسندگان
چکیده
[1] Tropospheric ozone (O3) effectively deposits to forested ecosystems but the fate of O3 within the forest canopy is unresolved. We partitioned total measured ecosystem daytime O3 deposition to a ponderosa pine (Pinus ponderosa) forest into its major loss pathways; stomatal uptake, non-stomatal surface deposition, and gas-phase chemistry. Total O3 flux was dominated by gas-phase chemistry during the summer and by stomatal uptake during winter. O3 loss due to gas-phase chemistry was exponentially dependent on temperature, with the same functionality as biogenic hydrocarbon emissions, implicating reactions with biogenic hydrocarbons as the likely gas-phase chemical O3 loss process within the canopy. The reaction of O3 with biogenically-emitted hydrocarbons leads to both hydroxyl radical formation and secondary aerosol growth with important effects on atmospheric chemistry and climate.
منابع مشابه
Heterogeneous Chemistry and Tropospheric Ozone
Ozone is produced in the troposphere by gas-phase oxidation of hydrocarbons and CO catalyzed by hydrogen oxide radicals (HOx ≡ OH + H + peroxy radicals) and nitrogen oxide radicals (NOx ≡ NO+NO2). Heterogeneous chemistry involving reactions in aerosol particles and cloud droplets may affect O3 concentrations in a number of ways including production and loss of HOx and NOx, direct loss of O3, an...
متن کاملGas-phase molecular halogen formation from NaCl and NaBr aerosols: when are interface reactions important?
Unique interface reactions at the surface of sea-salt particles have been suggested as an important source of photolyzable gas-phase halogen species in the troposphere. Many factors influence the relative importance of interface chemistry compared to aqueous-phase chemistry. The Model of Aerosol, Gas, and Interfacial Chemistry (MAGIC 2.0) is used to study the influence of interface reactions on...
متن کامل1 Heterogeneous Chemistry and Tropospheric Ozone
Ozone is produced in the troposphere by gas-phase oxidation of hydrocarbons and CO catalyzed by hydrogen oxide radicals (HOx ≡ OH + peroxy radicals) and nitrogen oxide radicals (NOx ≡ NO+NO2). Heterogeneous chemistry involving reactions in aerosol particles and cloud droplets can perturb O3 concentrations in a number of ways including production and loss of HOx and NOx, direct loss of O3, and p...
متن کاملSensitivity Analysis of a Mixed-Phase Chemical Mechanism using Automatic Differentiation
A mixed-phase chemistry box model is applied to study heterogeneous chemistry and its effect on tropospheric gas-phase chemistry, particularly on photochemical production of O3 and photochemical indicators for O3-NOx-hydrocarbon sensitivity, under a variety of atmospheric conditions ranging from remote marine to heavily-polluted atmospheres. A subsequent sensitivity analysis of the mixed-phase ...
متن کاملThe heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols
The heterogeneous reaction of OH radicals with sub-micron squalane particles, in the presence of O2, is used as a model system to explore the fundamental chemical mechanisms that control the oxidative aging of organic aerosols in the atmosphere. Detailed kinetic measurements combined with elemental mass spectrometric analysis reveal that the reaction proceeds sequentially by adding an average o...
متن کامل